Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629267

RESUMO

Seminal roots play a critical role in water and nutrient absorption, particularly in the early developmental stages of wheat. However, the genes responsible for controlling SRN in wheat remain largely unknown. Genetic mapping and functional analyses identified a candidate gene (TraesCS3D01G137200, TaSRN-3D) encoding a Ser/Thr kinase glycogen synthase kinase 3 (STKc_GSK3) that regulated SRN in wheat. Additionally, experiments involving hormone treatment, nitrate absorption and protein interaction were conducted to explore the regulatory mechanism of TaSRN-3D. Results showed that the TaSRN-3D4332 allele inhibited seminal roots initiation and development, while loss-of-function mutants showed significantly higher seminal root number (SRN). Exogenous application of epi-brassinolide could increase the SRN in a HS2-allelic background. Furthermore, chlorate sensitivity and 15N uptake assays revealed that a higher number of seminal roots promoted nitrate accumulation. TaBSR1 (BIN2-related SRN Regulator 1, orthologous to OsGRF4/GL2 in rice) acts as an interactor of TaSRN-3D and promotes TaBSR1 degradation to reduce SRN. This study provides valuable insights into understanding the genetic basis and regulatory network of SRN in wheat, highlighting their roles as potential targets for root-based improvement in wheat breeding.

2.
Sci Adv ; 10(15): eadk4027, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38608020

RESUMO

Drought is a major global challenge in agriculture that decreases crop production. γ-Aminobutyric acid (GABA) interfaces with drought stress in plants; however, a mechanistic understanding of the interaction between GABA accumulation and drought response remains to be established. Here we showed the potassium/proton exchanger TaNHX2 functions as a positive regulator in drought resistance in wheat by mediating cross-talk between the stomatal aperture and GABA accumulation. TaNHX2 interacted with glutamate decarboxylase TaGAD1, a key enzyme that synthesizes GABA from glutamate. Furthermore, TaNHX2 targeted the C-terminal auto-inhibitory domain of TaGAD1, enhanced its activity, and promoted GABA accumulation under drought stress. Consistent with this, the tanhx2 and tagad1 mutants showed reduced drought tolerance, and transgenic wheat with enhanced TaNHX2 expression had a yield advantage under water deficit without growth penalty. These results shed light on the plant stomatal movement mechanism under drought stress and the TaNHX2-TaGAD1 module may be harnessed for amelioration of negative environmental effects in wheat as well as other crops.


Assuntos
Resistência à Seca , Triticum , Triticum/genética , Ácido Glutâmico , Proteínas de Membrana Transportadoras , Potássio , Ácido gama-Aminobutírico
3.
Nat Commun ; 15(1): 2097, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453935

RESUMO

Heat stress threatens global wheat (Triticum aestivum) production, causing dramatic yield losses worldwide. Identifying heat tolerance genes and comprehending molecular mechanisms are essential. Here, we identify a heat tolerance gene, TaSG-D1E286K, in Indian dwarf wheat (Triticum sphaerococcum), which encodes an STKc_GSK3 kinase. TaSG-D1E286K improves heat tolerance compared to TaSG-D1 by enhancing phosphorylation and stability of downstream target TaPIF4 under heat stress condition. Additionally, we reveal evolutionary footprints of TaPIF4 during wheat selective breeding in China, that is, InDels predominantly occur in the TaPIF4 promoter of Chinese modern wheat cultivars and result in decreased expression level of TaPIF4 in response to heat stress. These sequence variations with negative effect on heat tolerance are mainly introduced from European germplasm. Our study provides insight into heat stress response mechanisms and proposes a potential strategy to improve wheat heat tolerance in future.


Assuntos
Termotolerância , Triticum , Triticum/fisiologia , Termotolerância/genética , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Resposta ao Choque Térmico/genética , China
4.
Plant Commun ; : 100883, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38491771

RESUMO

Spelt (T. aestivum ssp. spelta) is an important wheat subspecies mainly cultivated in Europe before the 20th century, which has contributed to modern wheat breeding as a valuable genetic resource. However, the origin and maintenance of spelt populations remain elusive. Here, based on a resequencing dataset of 416 worldwide wheat accessions, including representative spelt wheat, we demonstrated that European spelt emerged when primitive hexaploid wheat spread to the west and hybridized with pre-settled domesticated emmer, the putative maternal donor. Genomic introgression regions from domesticated emmer confer spelt's primitive morphological characters used for species taxonomy, such as tenacious glumes and later flowering. We further propose the haplotype-based 'spelt index' to identify spelt-type wheat varieties and to quantify the utilization of the spelt gene pool in modern wheat cultivars. This study deciphered the genetic basis underlying the establishment of spelt wheat subspecies in a specific ecological niche and revealed the vital role of spelt gene pool as a unique germplasm resource in contributing to modern wheat breeding.

5.
Plant Cell ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38537937

RESUMO

Cold injury is a major environmental stress affecting the growth and yield of crops. Brassinosteroids (BRs) and salicylic acid (SA) play important roles in plant cold tolerance. However, whether or how BR signaling interacts with the SA signaling pathway in response to cold stress is still unknown. Here, we identified an SA methyltransferase, TaSAMT1, that converts SA to methyl SA (MeSA) and confers freezing tolerance in wheat (Triticum aestivum). TaSAMT1 overexpression greatly enhanced wheat freezing tolerance, with plants accumulating more MeSA and less SA, whereas Tasamt1 knockout lines were sensitive to freezing stress and accumulated less MeSA and more SA. Spraying plants with MeSA conferred freezing tolerance to Tasamt1 mutants, but SA did not. We revealed that BRASSINAZOLE-RESISTANT 1 (TaBZR1) directly binds to the TaSAMT1 promoter and induces its transcription. Moreover, TaBZR1 interacts with the histone acetyltransferase TaHAG1, which potentiates TaSAMT1 expression via increased histone acetylation and modulates the SA pathway during freezing stress. Additionally, overexpression of TaBZR1 or TaHAG1 altered TaSAMT1 expression and improved freezing tolerance. Our results demonstrate a key regulatory node that connects the BR and SA pathways in the plant cold stress response. The regulatory factors or genes identified could be effective targets for the genetic improvement of freezing tolerance in crops.

6.
New Phytol ; 242(2): 507-523, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38362849

RESUMO

Polyploidization is a major event driving plant evolution and domestication. However, how reshaped epigenetic modifications coordinate gene transcription to generate phenotypic variations during wheat polyploidization is currently elusive. Here, we profiled transcriptomes and DNA methylomes of two diploid wheat accessions (SlSl and AA) and their synthetic allotetraploid wheat line (SlSlAA), which displayed elongated root hair and improved root capability for nitrate uptake and assimilation after tetraploidization. Globally decreased DNA methylation levels with a reduced difference between subgenomes were observed in the roots of SlSlAA. DNA methylation changes in first exon showed strong connections with altered transcription during tetraploidization. Homoeolog-specific transcription was associated with biased DNA methylation as shaped by homoeologous sequence variation. The hypomethylated promoters showed significantly enriched binding sites for MYB, which may affect gene transcription in response to root hair growth. Two master regulators in root hair elongation pathway, AlCPC and TuRSL4, exhibited upregulated transcription levels accompanied by hypomethylation in promoter, which may contribute to the elongated root hair. The upregulated nitrate transporter genes, including NPFs and NRTs, also are significantly associated with hypomethylation, indicating an epigenetic-incorporated regulation manner in improving nitrogen use efficiency. Collectively, these results provided new insights into epigenetic changes in response to crop polyploidization and underscored the importance of epigenetic regulation in improving crop traits.


Assuntos
Metilação de DNA , Tetraploidia , Metilação de DNA/genética , Triticum/genética , Epigênese Genética , Transcriptoma , Regulação da Expressão Gênica de Plantas
7.
Plant Biotechnol J ; 22(1): 200-215, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37752705

RESUMO

Grain size is one of the important traits in wheat breeding programs aimed at improving yield, and cytokinins, mainly involved in cell division, have a positive impact on grain size. Here, we identified a novel wheat gene TaMADS-GS encoding type I MADS-box transcription factor, which regulates the cytokinins signalling pathway during early stages of grain development to modulate grain size and weight in wheat. TaMADS-GS is exclusively expressed in grains at early stage of seed development and its knockout leads to delayed endosperm cellularization, smaller grain size and lower grain weight. TaMADS-GS protein interacts with the Polycomb Repressive Complex 2 (PRC2) and leads to repression of genes encoding cytokinin oxidase/dehydrogenases (CKXs) stimulating cytokinins inactivation by mediating accumulation of the histone H3 trimethylation at lysine 27 (H3K27me3). Through the screening of a large wheat germplasm collection, an elite allele of the TaMADS-GS exhibits higher ability to repress expression of genes inactivating cytokinins and a positive correlation with grain size and weight, thus representing a novel marker for breeding programs in wheat. Overall, these findings support the relevance of TaMADS-GS as a key regulator of wheat grain size and weight.


Assuntos
Endosperma , Fatores de Transcrição , Fatores de Transcrição/genética , Endosperma/metabolismo , Triticum/metabolismo , Melhoramento Vegetal , Grão Comestível , Citocininas/metabolismo , Regulação da Expressão Gênica de Plantas/genética
8.
Theor Appl Genet ; 136(12): 254, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38006406

RESUMO

KEY MESSAGE: A point mutation of RPM1 triggers persistent immune response that induces leaf premature senescence in wheat, providing novel information of immune responses and leaf senescence. Leaf premature senescence in wheat (Triticum aestivum L.) is one of the most common factors affecting the plant's development and yield. In this study, we identified a novel wheat mutant, yellow leaf and premature senescence (ylp), which exhibits yellow leaves and premature senescence at the heading and flowering stages. Consistent with the yellow leaves phenotype, ylp had damaged and collapsed chloroplasts. Map-based cloning revealed that the phenotype of ylp was caused by a point mutation from Arg to His at amino acid 790 in a plasma membrane-localized protein resistance to Pseudomonas syringae pv. maculicola 1 (RPM1). The point mutation triggered excessive immune responses and the upregulation of senescence- and autophagy-associated genes. This work provided the information for understanding the molecular regulatory mechanism of leaf senescence, and the results would be important to analyze which mutations of RPM1 could enable plants to obtain immune activation without negative effects on plant growth.


Assuntos
Pseudomonas syringae , Triticum , Triticum/genética , Triticum/metabolismo , Pseudomonas syringae/metabolismo , Proteínas de Plantas/metabolismo , Aminoácidos/metabolismo , Folhas de Planta , Mutação , Regulação da Expressão Gênica de Plantas
9.
J Integr Plant Biol ; 65(12): 2587-2603, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37846823

RESUMO

Interploidy hybridization between hexaploid and tetraploid genotypes occurred repeatedly during genomic introgression events throughout wheat evolution, and is commonly employed in wheat breeding programs. Hexaploid wheat usually serves as maternal parent because the reciprocal cross generates progeny with severe defects and poor seed germination, but the underlying mechanism is poorly understood. Here, we performed detailed analysis of phenotypic variation in endosperm between two interploidy reciprocal crosses arising from tetraploid (Triticum durum, AABB) and hexaploid wheat (Triticum aestivum, AABBDD). In the paternal- versus the maternal-excess cross, the timing of endosperm cellularization was delayed and starch granule accumulation in the endosperm was repressed, causing reduced germination percentage. The expression profiles of genes involved in nutrient metabolism differed strongly between these endosperm types. Furthermore, expression patterns of parental alleles were dramatically disturbed in interploidy versus intraploidy crosses, leading to increased number of imprinted genes. The endosperm-specific TaLFL2 showed a paternally imprinted expression pattern in interploidy crosses partially due to allele-specific DNA methylation. Paternal TaLFL2 binds to and represses a nutrient accumulation regulator TaNAC019, leading to reduced storage protein and starch accumulation during endosperm development in paternal-excess cross, as confirmed by interploidy crosses between tetraploid wild-type and clustered regularly interspaced palindromic repeats (CRISPR) - CRISPR-associated protein 9 generated hexaploid mutants. These findings reveal a contribution of genomic imprinting to paternal-excess interploidy hybridization barriers during wheat evolution history and explains why experienced breeders preferentially exploit maternal-excess interploidy crosses in wheat breeding programs.


Assuntos
Fatores de Transcrição , Triticum , Fatores de Transcrição/metabolismo , Triticum/genética , Sementes/genética , Tetraploidia , Melhoramento Vegetal , Isolamento Reprodutivo , Cruzamentos Genéticos , Endosperma/genética , Amido/metabolismo
11.
New Phytol ; 239(6): 2235-2247, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37403528

RESUMO

Heat stress greatly threatens crop production. Plants have evolved multiple adaptive mechanisms, including alternative splicing, that allow them to withstand this stress. However, how alternative splicing contributes to heat stress responses in wheat (Triticum aestivum) is unclear. We reveal that the heat shock transcription factor gene TaHSFA6e is alternatively spliced in response to heat stress. TaHSFA6e generates two major functional transcripts: TaHSFA6e-II and TaHSFA6e-III. TaHSFA6e-III enhances the transcriptional activity of three downstream heat shock protein 70 (TaHSP70) genes to a greater extent than does TaHSFA6e-II. Further investigation reveals that the enhanced transcriptional activity of TaHSFA6e-III is due to a 14-amino acid peptide at its C-terminus, which arises from alternative splicing and is predicted to form an amphipathic helix. Results show that knockout of TaHSFA6e or TaHSP70s increases heat sensitivity in wheat. Moreover, TaHSP70s are localized in stress granule following exposure to heat stress and are involved in regulating stress granule disassembly and translation re-initiation upon stress relief. Polysome profiling analysis confirms that the translational efficiency of stress granule stored mRNAs is lower at the recovery stage in Tahsp70s mutants than in the wild types. Our finding provides insight into the molecular mechanisms by which alternative splicing improves the thermotolerance in wheat.


Assuntos
Proteínas de Choque Térmico , Termotolerância , Proteínas de Choque Térmico/metabolismo , Triticum/metabolismo , Processamento Alternativo/genética , Resposta ao Choque Térmico/genética , Termotolerância/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
12.
Front Plant Sci ; 14: 1108565, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152129

RESUMO

Epidemics of leaf rust (caused by the fungal pathogen Puccinia triticina Erikss., Pt) raise concerns regarding sustainability of wheat production. Deployment of resistant cultivars is the most effective and economic strategy for combating this disease. Ofanto is a durum wheat cultivar that exhibits high resistance to Pt race PHT throughout its entire growing period. In the present study, we identified a leaf rust resistance gene in Ofanto and temporarily designated it as LrOft. LrOft was mapped to a 2.5 cM genetic interval in chromosome arm 6BL between Indel markers 6B6941 and 6B50L24. During introgression of LrOft from Ofanto to common wheat it was observed that F1 plants of Ofanto crossed with Shi4185 exhibited leaf rust resistance whereas the F1 of Ofanto crossed with ND4503 was susceptible. In order to map the presumed suppressor locus, a Shi4185/ND4503//Ofanto three-way pentaploid population was generated and SuLrOft was mapped on chromosome arm 2AS. SuLrOft was mapped within a 2.6 cM genetic interval flanked by 2AS50L14 and 2AS50L6. Fine mapping using 2,268 plants of the three-way cross narrowed the suppressor locus to a 68.2-kbp physical interval according to IWGSC RefSeq v1.1. Sequence analysis of genes in the physical interval revealed that TraesCS2A02G110800 encoding an RPP-13-like protein with an NB-ARC domain was a potential candidate for SuLrOft.

13.
Plant Physiol ; 193(1): 578-594, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37249052

RESUMO

Intracellular gene transfers (IGTs) between the nucleus and organelles, including plastids and mitochondria, constantly reshape the nuclear genome during evolution. Despite the substantial contribution of IGTs to genome variation, the dynamic trajectories of IGTs at the pangenomic level remain elusive. Here, we developed an approach, IGTminer, that maps the evolutionary trajectories of IGTs using collinearity and gene reannotation across multiple genome assemblies. We applied IGTminer to create a nuclear organellar gene (NOG) map across 67 genomes covering 15 Poaceae species, including important crops. The resulting NOGs were verified by experiments and sequencing data sets. Our analysis revealed that most NOGs were recently transferred and lineage specific and that Triticeae species tended to have more NOGs than other Poaceae species. Wheat (Triticum aestivum) had a higher retention rate of NOGs than maize (Zea mays) and rice (Oryza sativa), and the retained NOGs were likely involved in photosynthesis and translation pathways. Large numbers of NOG clusters were aggregated in hexaploid wheat during 2 rounds of polyploidization, contributing to the genetic diversity among modern wheat accessions. We implemented an interactive web server to facilitate the exploration of NOGs in Poaceae. In summary, this study provides resources and insights into the roles of IGTs in shaping interspecies and intraspecies genome variation and driving plant genome evolution.


Assuntos
Oryza , Poaceae , Poaceae/genética , Triticum/genética , Genoma de Planta/genética , Oryza/genética , Zea mays/genética , Evolução Molecular
14.
Nature ; 617(7959): 118-124, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37100915

RESUMO

Modern green revolution varieties of wheat (Triticum aestivum L.) confer semi-dwarf and lodging-resistant plant architecture owing to the Reduced height-B1b (Rht-B1b) and Rht-D1b alleles1. However, both Rht-B1b and Rht-D1b are gain-of-function mutant alleles encoding gibberellin signalling repressors that stably repress plant growth and negatively affect nitrogen-use efficiency and grain filling2-5. Therefore, the green revolution varieties of wheat harbouring Rht-B1b or Rht-D1b usually produce smaller grain and require higher nitrogen fertilizer inputs to maintain their grain yields. Here we describe a strategy to design semi-dwarf wheat varieties without the need for Rht-B1b or Rht-D1b alleles. We discovered that absence of Rht-B1 and ZnF-B (encoding a RING-type E3 ligase) through a natural deletion of a haploblock of about 500 kilobases shaped semi-dwarf plants with more compact plant architecture and substantially improved grain yield (up to 15.2%) in field trials. Further genetic analysis confirmed that the deletion of ZnF-B induced the semi-dwarf trait in the absence of the Rht-B1b and Rht-D1b alleles through attenuating brassinosteroid (BR) perception. ZnF acts as a BR signalling activator to facilitate proteasomal destruction of the BR signalling repressor BRI1 kinase inhibitor 1 (TaBKI1), and loss of ZnF stabilizes TaBKI1 to block BR signalling transduction. Our findings not only identified a pivotal BR signalling modulator but also provided a creative strategy to design high-yield semi-dwarf wheat varieties by manipulating the BR signal pathway to sustain wheat production.


Assuntos
Biomassa , Brassinosteroides , Grão Comestível , Transdução de Sinais , Triticum , Alelos , Brassinosteroides/metabolismo , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo , Deleção de Genes , Genes de Plantas , Giberelinas/metabolismo , Fenótipo , Triticum/classificação , Triticum/genética , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Proteínas de Plantas/genética , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo
15.
Plant Sci ; 331: 111676, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36933836

RESUMO

Heat stress is a limiting factor in wheat production along with global warming. Development of heat-tolerant wheat varieties and generation of suitable pre-breeding materials are the major goals in current wheat breeding programs. Our understanding on the genetic basis of thermotolerance remains sparse. In this study, we genotyped a collection of 211 core spring wheat accessions and conducted field trials to evaluate the grain-related traits under heat stress and non-stress conditions in two different locations for three consecutive years. Based on SNP datasets and grain-related traits, we performed genome-wide association study (GWAS) to detect stable loci related to thermotolerance. Thirty-three quantitative trait loci (QTL) were identified, nine of them are the same loci as previous studies, and 24 are potentially novel loci. Functional candidate genes at these QTL are predicted and proved to be relevant to heat stress and grain-related traits such as TaELF3-A1 (1A) for earliness per se (Eps), TaHSFA1-B1 (5B) influencing heat tolerance and TaVIN2-A1 (6A) for grain size. Functional markers of TaELF3-A1 were detected and converted to KASP markers, with their function and genetic diversity being analyzed in the natural populations. In addition, our results unveiled favor alleles controlling agronomic traits and/or heat stress tolerance. In summary, we provide insights into heritable correlation between yield and heat stress tolerance, which will accelerate the development of new cultivars with high and stable yield of wheat in the future.


Assuntos
Termotolerância , Triticum , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Fenótipo , Grão Comestível/genética , Termotolerância/genética , Polimorfismo de Nucleotídeo Único/genética
16.
Plant Cell ; 35(6): 1848-1867, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-36905284

RESUMO

The dynamics of gene expression in crop grains has typically been investigated at the transcriptional level. However, this approach neglects translational regulation, a widespread mechanism that rapidly modulates gene expression to increase the plasticity of organisms. Here, we performed ribosome profiling and polysome profiling to obtain a comprehensive translatome data set of developing bread wheat (Triticum aestivum) grains. We further investigated the genome-wide translational dynamics during grain development, revealing that the translation of many functional genes is modulated in a stage-specific manner. The unbalanced translation between subgenomes is pervasive, which increases the expression flexibility of allohexaploid wheat. In addition, we uncovered widespread previously unannotated translation events, including upstream open reading frames (uORFs), downstream open reading frames (dORFs), and open reading frames (ORFs) in long noncoding RNAs, and characterized the temporal expression dynamics of small ORFs. We demonstrated that uORFs act as cis-regulatory elements that can repress or even enhance the translation of mRNAs. Gene translation may be combinatorially modulated by uORFs, dORFs, and microRNAs. In summary, our study presents a translatomic resource that provides a comprehensive and detailed overview of the translational regulation in developing bread wheat grains. This resource will facilitate future crop improvements for optimal yield and quality.


Assuntos
MicroRNAs , Triticum , Triticum/genética , Pão , MicroRNAs/genética , RNA Mensageiro , Polirribossomos , Fases de Leitura Aberta/genética , Grão Comestível/genética , Biossíntese de Proteínas/genética
17.
Plant Commun ; 4(4): 100590, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-36919240

RESUMO

Awns are important morphological markers for wheat and exert a strong physiological effect on wheat yield. The awn elongation suppressor B1 has recently been cloned through association and linkage analysis in wheat. However, the mechanism of awn inhibition centered around B1 remains to be clarified. Here, we identified an allelic variant in the coding region of B1 through analysis of re-sequencing data; this variant causes an amino acid substitution and premature termination, resulting in a long-awn phenotype. Transcriptome analysis indicated that B1 inhibited awn elongation by impeding cytokinin- and auxin-promoted cell division. Moreover, B1 directly repressed the expression of TaRAE2 and TaLks2, whose orthologs have been reported to promote awn development in rice or barley. More importantly, we found that TaTCP4 and TaTCP10 synergistically inhibited the expression of B1, and a G-to-A mutation in the B1 promoter attenuated its inhibition by TaTCP4/10. Taken together, our results reveal novel mechanisms of awn development and provide genetic resources for trait improvement in wheat.


Assuntos
Hordeum , Triticum , Triticum/genética , Mutação , Fenótipo , Hordeum/genética , Divisão Celular
18.
New Phytol ; 239(1): 87-101, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36617723

RESUMO

Gluten is composed of glutenins and gliadins and determines the viscoelastic properties of dough and end-use quality in wheat (Triticum aestivum L.). Gliadins are important for wheat end-use traits, but the contribution of individual gliadin genes is unclear, since gliadins are encoded by a complex, multigenic family, including many pseudogenes. We used CRISPR/Cas9-mediated gene editing and map-based cloning to investigate the contribution of the γ-gliadin genes annotated in the wheat cultivar 'Fielder', showing that Gli-γ1-1D and Gli-γ2-1B account for most of the γ-gliadin accumulation. The impaired activity of only two γ-gliadin genes in knockout mutants improved end-use quality and reduced gluten epitopes associated with celiac disease (CD). Furthermore, we identified an elite haplotype of Gli-γ1-1D linked to higher end-use quality in a wheat germplasm collection and developed a molecular marker for this allele for marker-assisted selection. Our findings provide information and tools for biotechnology-based and classical breeding programs aimed at improving wheat end-use quality.


Assuntos
Gliadina , Triticum , Gliadina/genética , Triticum/genética , Alelos , Melhoramento Vegetal , Glutens/genética
19.
Mol Plant ; 16(2): 393-414, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36575796

RESUMO

Gene regulation is central to all aspects of organism growth, and understanding it using large-scale functional datasets can provide a whole view of biological processes controlling complex phenotypic traits in crops. However, the connection between massive functional datasets and trait-associated gene discovery for crop improvement is still lacking. In this study, we constructed a wheat integrative gene regulatory network (wGRN) by combining an updated genome annotation and diverse complementary functional datasets, including gene expression, sequence motif, transcription factor (TF) binding, chromatin accessibility, and evolutionarily conserved regulation. wGRN contains 7.2 million genome-wide interactions covering 5947 TFs and 127 439 target genes, which were further verified using known regulatory relationships, condition-specific expression, gene functional information, and experiments. We used wGRN to assign genome-wide genes to 3891 specific biological pathways and accurately prioritize candidate genes associated with complex phenotypic traits in genome-wide association studies. In addition, wGRN was used to enhance the interpretation of a spike temporal transcriptome dataset to construct high-resolution networks. We further unveiled novel regulators that enhance the power of spike phenotypic trait prediction using machine learning and contribute to the spike phenotypic differences among modern wheat accessions. Finally, we developed an interactive webserver, wGRN (http://wheat.cau.edu.cn/wGRN), for the community to explore gene regulation and discover trait-associated genes. Collectively, this community resource establishes the foundation for using large-scale functional datasets to guide trait-associated gene discovery for crop improvement.


Assuntos
Estudo de Associação Genômica Ampla , Triticum , Triticum/genética , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...